Nilpotent symmetric Jacobian matrices and the Jacobian conjecture
نویسندگان
چکیده
منابع مشابه
Nilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture Ii
It is shown that the Jacobian Conjecture holds for all polynomial maps F : k → k of the form F = x + H , such that JH is nilpotent and symmetric, when n ≤ 4. If H is also homogeneous a similar result is proved for all n ≤ 5. Introduction Let F := (F1, . . . , Fn) : C → C be a polynomial map i.e. each Fi is a polynomial in n variables over C. Denote by JF := (i ∂xj )1≤i,j≤n, the Jacobian matrix ...
متن کاملJacobian Conjecture and Nilpotent Mappings
We prove the equivalence of the Jacobian Conjecture (JC(n)) and the Conjecture on the cardinality of the set of fixed points of a polynomial nilpotent mapping (JN(n)) and prove a series of assertions confirming JN(n).
متن کاملHessian Nilpotent Polynomials and the Jacobian Conjecture
Let z = (z1, · · · , zn) and ∆ = ∑n i=1 ∂ 2 ∂z i the Laplace operator. The main goal of the paper is to show that the wellknown Jacobian conjecture without any additional conditions is equivalent to the following what we call vanishing conjecture: for any homogeneous polynomial P (z) of degree d = 4, if ∆P(z) = 0 for all m ≥ 1, then ∆P(z) = 0 when m >> 0, or equivalently, ∆P(z) = 0 when m > 3 2...
متن کاملOn the Jacobian Conjecture
The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k . Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2004
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(04)00064-7